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Verification 

• It is important 
– Trust me!

• Very powerful tools in the market 
– Formal verification 

• For formal tools: little understanding of 
behavior 
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How does verification work? 

• Circuit is designed

• Handed to verification tool 
– Simulation/emulation 
– Formal techniques 
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What would we like to have? 

• Prediction
– Run time 
– Memory requirement 

• Polynomial 

Questions: 
- Can this work for any/all circuits? 
- How do these circuits look like? 
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Example: multiplier verification 

• Formal Verification of Integer Multipliers 
by Combining Gröbner Basis with Logic 
Reduction
(Sayed-Ahmed et al, DATE, 2016)

– 128-bit multiplier verified 
• Polynomial verification of multipliers 

(Keim et al., Formal Methods in System 
Design, 2003)

– Based on *BMDs (difficult DD type) 
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Design for verifiability  

• Goal: Design circuits such that
– Formally verifiable
– Polynomial bounds 
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Binary Decision Diagrams

• Shannon decomposition:

• Terminals: ‘0‘, ‘1‘
• Ordered and reduced 

BDDs
• Canonical data 

structure 
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Derive circuits from BDDs

• Synthesis of fully testable circuits from 
BDDs (Drechsler et al, TCAD, 2004)

• Each node is substituted by a multiplexor
• Example:
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Consider Construction

• Small BDD does not imply small BDD 
during construction! 

– Otherwise: tautology checking 
would be trivial 

• But, interesting to look at BDD results: 
Bern et al: Global rebuilding of OBDDs 
Avoiding Memory Requirement Maxima. 
CAV 1995
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What makes verification hard? 

• Similar to test 
generation 

• Circuit structure
• Tree-like 

-> polynomial 
verification (e.g. by BDDs) 

• But how about reconvergent paths? 
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Reverse engineer formal tools 

• E.g.: what makes SAT solvers efficient? 
– Implication graphs
– Learning 
– Non-chronological backtracking 
– …

• How do these circuits look like? 
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Conclusions

• Today: very powerful formal 
verification tools

– But: little understanding 
• Research goal: 

– Designing circuits that are by 
construction provably formally 
verifiable 

• Works for BDDs, but not trivial! 
• Future work: extension to KFDDs, SAT, 

SMT,…
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