
Using Formal Techniques
for Design for Verifiability

Rolf Drechsler

University of Bremen
DFKI GmbH
Germany

drechsler@uni-bremen.de

2

Verification

• It is important
– Trust me!

• Very powerful tools in the market
– Formal verification

• For formal tools: little understanding of
behavior

3

How does verification work?

• Circuit is designed

• Handed to verification tool
– Simulation/emulation
– Formal techniques

4

How does verification work?

• Circuit is designed

• Handed to verification tool
– Simulation/emulation
– Formal techniques

5

What would we like to have?

• Prediction
– Run time
– Memory requirement

• Polynomial

Questions:
- Can this work for any/all circuits?
- How do these circuits look like?

6

Example: multiplier verification

• Formal Verification of Integer Multipliers
by Combining Gröbner Basis with Logic
Reduction
(Sayed-Ahmed et al, DATE, 2016)

– 128-bit multiplier verified
• Polynomial verification of multipliers

(Keim et al., Formal Methods in System
Design, 2003)

– Based on *BMDs (difficult DD type)

7

Design for verifiability

• Goal: Design circuits such that
– Formally verifiable
– Polynomial bounds

8

Binary Decision Diagrams

• Shannon decomposition:

• Terminals: ‘0‘, ‘1‘
• Ordered and reduced

BDDs
• Canonical data

structure

10
ii xixi fxfxf

xi0 1

f

fxi=0 fxi=1

9

Derive circuits from BDDs

• Synthesis of fully testable circuits from
BDDs (Drechsler et al, TCAD, 2004)

• Each node is substituted by a multiplexor
• Example:

0

MUX

MUX

1

1X2

X1 MUX

MUX

t

X2

X1

X2

X1

10

2121),(xxxxf

10

Consider Construction

• Small BDD does not imply small BDD
during construction!

– Otherwise: tautology checking
would be trivial

• But, interesting to look at BDD results:
Bern et al: Global rebuilding of OBDDs
Avoiding Memory Requirement Maxima.
CAV 1995

11

What makes verification hard?

• Similar to test
generation

• Circuit structure
• Tree-like

-> polynomial
verification (e.g. by BDDs)

• But how about reconvergent paths?

Propagation

Fault site

Justifi-
cation

Reconvergent path

12

Reverse engineer formal tools

• E.g.: what makes SAT solvers efficient?
– Implication graphs
– Learning
– Non-chronological backtracking
– …

• How do these circuits look like?

13

Conclusions

• Today: very powerful formal
verification tools

– But: little understanding
• Research goal:

– Designing circuits that are by
construction provably formally
verifiable

• Works for BDDs, but not trivial!
• Future work: extension to KFDDs, SAT,

SMT,…

Using Formal Techniques
for Design for Verifiability

Rolf Drechsler

University of Bremen
DFKI GmbH
Germany

drechsler@uni-bremen.de

